In pseudo-assembly language,
li #0, r0
test r1
beq L1
li #1, r0
L1:
may or may not be faster than
test r1
beq L1
li #1, r0
bra L2
L1:
li #0, r0
L2:
depending on how sophisticated the actual CPU is. Going from simplest to fanciest:
With any CPU manufactured after roughly 1990, good performance depends on the code fitting within the instruction cache. When in doubt, therefore, minimize code size. This weighs in favor of the first example.
With a basic "in-order, five-stage pipeline" CPU, which is still roughly what you get in many microcontrollers, there is a pipeline bubble every time a branch—conditional or unconditional—is taken, so it is also important to minimize the number of branch instructions. This also weighs in favor of the first example.
Somewhat more sophisticated CPUs—fancy enough to do "out-of-order execution", but not fancy enough to use the best known implementations of that concept—may incur pipeline bubbles whenever they encounter write-after-write hazards. This weighs in favor of the second example, where r0 is written only once no matter what. These CPUs are usually fancy enough to process unconditional branches in the instruction fetcher, so you aren't just trading the write-after-write penalty for a branch penalty.
I don't know if anyone is still making this kind of CPU anymore. However, the CPUs that do use the "best known implementations" of out-of-order execution are likely to cut corners on the less frequently used instructions, so you need to be aware that this sort of thing can happen. A real example is false data dependencies on the destination registers in popcnt and lzcnt on Sandy Bridge CPUs.
At the highest end, the OOO engine will wind up issuing exactly the same sequence of internal operations for both code fragments—this is the hardware version of "don't worry about it, the compiler will generate the same machine code either way." However, code size still does matter, and now you also should be worrying about the predictability of the conditional branch. Branch prediction failures potentially cause a complete pipeline flush, which is catastrophic for performance; see Why is it faster to process a sorted array than an unsorted array? to understand how much difference this can make.
If the branch is highly unpredictable, and your CPU has conditional-set or conditional-move instructions, this is the time to use them:
li #0, r0
test r1
setne r0
or
li #0, r0
li #1, r2
test r1
movne r2, r0
The conditional-set version is also more compact than any other alternative; if that instruction is available it is practically guaranteed to be the Right Thing for this scenario, even if the branch was predictable. The conditional-move version requires an additional scratch register, and always wastes one li instruction's worth of dispatch and execute resources; if the branch was in fact predictable, the branchy version may well be faster.