Say you have an array of positive integers, manipulate them so that the concatenation of the integers of the resultant array is the largest number possible. Ex: {9,1,95,17,5}, r
The idea of @Nate Kohl is very good. I just implemented a Java version using quicksort. Here it is:
import java.util.Random;
public class Sort_MaxConcatenation {
private Random r = new Random();
public void quicksort_maxConcatenation(int[] a, int begin, int end) {
if (begin < end) {
int q = partition(a, begin, end);
quicksort_maxConcatenation(a, begin, q);
quicksort_maxConcatenation(a, q + 1, end);
}
}
private int partition(int[] a, int begin, int end) {
int p = begin + r.nextInt(end - begin + 1);
int t1 = a[p];
a[p] = a[end];
a[end] = t1;
int pivot = t1;
int q = begin;
for (int i = begin; i < end; i++) {
if (compare_maxConcatenation(a[i], pivot) > 0) {
int t2 = a[q];
a[q] = a[i];
a[i] = t2;
q++;
}
}
int t3 = a[q];
a[q] = a[end];
a[end] = t3;
return q;
}
private int compare_maxConcatenation(int i, int j) {
int ij = Integer.valueOf(String.valueOf(i).concat(String.valueOf(j)));
int ji = Integer.valueOf(String.valueOf(j).concat(String.valueOf(i)));
if (ij > ji)
return 1;
else if (ij == ji)
return 0;
return -1;
}
public static void main(String[] args) {
int[] a = new int[]{56, 5, 4, 94, 9, 14, 1};
Sort_MaxConcatenation smc = new Sort_MaxConcatenation();
smc.quicksort_maxConcatenation(a, 0, a.length-1);
for(int i = 0;i < a.length;i++) {
System.out.print(a[i]);
}
}
}