>>> a
DataFrame[id: bigint, julian_date: string, user_id: bigint]
>>> b
DataFrame[id: bigint, quan_created_money: decimal(10,0), quan_created_cnt: bigi
Consider 2 dataFrames:
>>> aDF.show()
+---+----+
| id|datA|
+---+----+
| 1| a1|
| 2| a2|
| 3| a3|
+---+----+
and
>>> bDF.show()
+---+----+
| id|datB|
+---+----+
| 2| b2|
| 3| b3|
| 4| b4|
+---+----+
To accomplish what you are looking for, there are 2 ways:
1. Different joining condition. Instead of saying aDF.id == bDF.id
aDF.join(bDF, aDF.id == bDF.id, "outer")
Write this:
aDF.join(bDF, "id", "outer").show()
+---+----+----+
| id|datA|datB|
+---+----+----+
| 1| a1|null|
| 3| a3| b3|
| 2| a2| b2|
| 4|null| b4|
+---+----+----+
This will automatically get rid of the extra the dropping process.
2. Use Aliasing: You will lose data related to B Specific Id's in this.
>>> from pyspark.sql.functions import col
>>> aDF.alias("a").join(bDF.alias("b"), aDF.id == bDF.id, "outer").drop(col("b.id")).show()
+----+----+----+
| id|datA|datB|
+----+----+----+
| 1| a1|null|
| 3| a3| b3|
| 2| a2| b2|
|null|null| b4|
+----+----+----+