I have a binary file with some layout I know. For example let format be like this:
Currently I do it so:
load file to ifstream
read this stream to char buffer[2]
cast it to
unsigned short:unsigned short len{ *((unsigned short*)buffer) };. Now I have length of a string.
That last risks a SIGBUS (if your character array happens to start at an odd address and your CPU can only read 16-bit values that are aligned at an even address), performance (some CPUs will read misaligned values but slower; others like modern x86s are fine and fast) and/or endianness issues. I'd suggest reading the two characters then you can say (x[0] << 8) | x[1] or vice versa, using htons if needing to correct for endianness.
- read a stream to
vectorand create astd::stringfrom thisvector. Now I have string id.
No need... just read directly into the string:
std::string s(the_size, ' ');
if (input_fstream.read(&s[0], s.size()) &&
input_stream.gcount() == s.size())
...use s...
- the same way
readnext 4 bytes and cast them tounsigned int. Now I have a stride.whilenot end of filereadfloats the same way - create achar bufferFloat[4]and cast*((float*)bufferFloat)for everyfloat.
Better to read the data directly over the unsigned ints and floats, as that way the compiler will ensure correct alignment.
This works, but for me it looks ugly. Can I read directly to
unsigned shortorfloatorstringetc. withoutchar [x]creating? If no, what is the way to cast correctly (I read that style I'm using - is an old style)?
struct Data
{
uint32_t x;
float y[6];
};
Data data;
if (input_stream.read((char*)&data, sizeof data) &&
input_stream.gcount() == sizeof data)
...use x and y...
Note the code above avoids reading data into potentially unaligned character arrays, wherein it's unsafe to reinterpret_cast data in a potentially unaligned char array (including inside a std::string) due to alignment issues. Again, you may need some post-read conversion with htonl if there's a chance the file content differs in endianness. If there's an unknown number of floats, you'll need to calculate and allocate sufficient storage with alignment of at least 4 bytes, then aim a Data* at it... it's legal to index past the declared array size of y as long as the memory content at the accessed addresses was part of the allocation and holds a valid float representation read in from the stream. Simpler - but with an additional read so possibly slower - read the uint32_t first then new float[n] and do a further read into there....
Practically, this type of approach can work and a lot of low level and C code does exactly this. "Cleaner" high-level libraries that might help you read the file must ultimately be doing something similar internally....