How I can get the the eigen values and eigen vectors of the PCA application?
from sklearn.decomposition import PCA
clf=PCA(0.98,whiten=True) #converse 98%
When you say "eigenvalues", do you mean the "singular values" for PCA? Eigenvalues are only possible when the matrix PCA applied on are square matrix.
If you are trying to use "eigenvalues" to determine the proper dimension needed for PCA, you should actually use singular values. You can just use pca.singular_values_ to get the singular values.