I have an embedded application with a time-critical ISR that needs to iterate through an array of size 256 (preferably 1024, but 256 is the minimum) and check if a value matches
If the set of constants in your table is known in advance, you can use perfect hashing to ensure that only one access is made to the table. Perfect hashing determines a hash function that maps every interesting key to a unique slot (that table isn't always dense, but you can decide how un-dense a table you can afford, with less dense tables typically leading to simpler hashing functions).
Usually, the perfect hash function for the specific set of keys is relatively easy to compute; you don't want that to be long and complicated because that competes for time perhaps better spent doing multiple probes.
Perfect hashing is a "1-probe max" scheme. One can generalize the idea, with the thought that one should trade simplicity of computing the hash code with the time it takes to make k probes. After all, the goal is "least total time to look up", not fewest probes or simplest hash function. However, I've never seen anybody build a k-probes-max hashing algorithm. I suspect one can do it, but that's likely research.
One other thought: if your processor is extremely fast, the one probe to memory from a perfect hash probably dominates the execution time. If the processor is not very fast, than k>1 probes might be practical.