I have an n x m matrix consisting of non-negative integers. For example:
2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4
If you want the absolute optimal solution to clean the board you will have to use classic backtracking, but if the matrix is very big it will take ages to find the best solution, if you want an "possible" optimal solution you can use greedy algorithm, if you need help writing the algorithm i can help you
Come to think of it that is the best way. Make another matrix there you store the points you remove by dropping a bomb there then chose the cell with maximum points and drop the bomb there update the points matrix and continue. Example:
2 3 5 -> (2+(1*3)) (3+(1*5)) (5+(1*3))
1 3 2 -> (1+(1*4)) (3+(1*7)) (2+(1*4))
1 0 2 -> (1+(1*2)) (0+(1*5)) (2+(1*2))
cell value +1 for every adjacent cell with a value higher than 0