I have an n x m matrix consisting of non-negative integers. For example:
2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4
Well, suppose we number the board positions 1, 2, ..., n x m. Any sequence of bomb drops can be represented by a sequence of numbers in this set, where numbers can repeat. However, the effect on the board is the same regardless of what order you drop the bombs in, so really any choice of bomb drops can be represented as a list of n x m numbers, where the first number represents the number of bombs dropped on position 1, the second number represents the number of bombs dropped on position 2, etc. Let's call this list of n x m numbers the "key".
You could try first calculating all board states resulting from 1 bomb drop, then use these to calculate all board states resulting from 2 bomb drops, etc until you get all zeros. But at each step you would cache the states using the key I defined above, so you can use these results in calculating the next step (a "dynamic programming" approach).
But depending on the size of n, m, and the numbers in the grid, the memory requirements of this approach might be excessive. You can throw away all the results for N bomb drops once you've calculated all the results for N + 1, so there's some savings there. And of course you could not cache anything at the cost of having it take a lot longer -- the dynamic programming approach trades memory for speed.