I want to generate random number in sorted order. I wrote below code:
void CreateSortedNode(pNode head)
{
int size = 10, last = 0;
pNode temp;
while(
Suppose you wanted to generate just three random numbers, x, y, and z so that they are in sorted order x <= y <= z. You will place these in some C++ container, which I'll just denote as a list like D = [x, y, z], so we can also say that x is component 0 of D, or D_0 and so on.
For any sequential algorithm that first draws a random value for x, let's say it comes up with 2.5, then this tells us some information about what y has to be, Namely, y >= 2.5.
So, conditional on the value of x, your desired random number algorithm has to satisfy the property that p(y >= x | x) = 1. If the distribution you are drawing from is anything like a common distribution, like uniform or Guassian, then it's clear to see that usually p(y >= x) would be some other expression involving the density for that distribution. (In fact, only a pathological distribution like a Dirac Delta at "infinity" could be independent, and would be nonsense for your application.)
So what we can speculate with great confidence is that p(y >= t | x) for various values of t is not equal to p(y >= t). That's the definition for dependent random variables. So now you know that the random variable y (second in your eventual list) is not statistically independent of x.
Another way to state it is that in your output data D, the components of D are not statistically independent observations. And in fact they must be positively correlated since if we learn that x is bigger than we thought, we also automatically learn that y is bigger than or equal to what we thought.
In this sense, a sequential algorithm that provides this kind of output is an example of a Markov Chain. The probability distribution of a given number in the sequence is conditionally dependent on the previous number.
If you really want a Markov Chain like that (I suspect that you don't), then you could instead draw a first number at random (for x) and then draw positive deltas, which you will add to each successive number, like this:
x, say 2.5y-x, say 13.7, so y is 2.5 + 13.7 = 16.2z-y, say 0.001, so z is 16.201You just have to acknowledge that the components of your result are not statistically independent, and so you cannot use them in an application that relies on statistical independence assumptions.