I have a matrix \'A\' whose values are shown below. After creating a matrix \'B\' of ones using numpy.ones and assigning the values from \'A\' to \'B\' by indexing \'i\' rows an
Here first what I think you are trying to do, with minimal corrections, comments to your code:
import numpy as np
A = np.matrix([[8,8,8,7,7,6,8,2],
[8,8,7,7,7,6,6,7],
[1,8,8,7,7,6,6,6],
[1,1,8,7,7,6,7,7],
[1,1,1,1,8,7,7,6],
[1,1,2,1,8,7,7,6],
[2,2,2,1,1,8,7,7],
[2,1,2,1,1,8,8,7]])
B = np.ones((8,8),dtype=np.int)
for i in np.arange(1,9): # i= 1...8
for j in np.arange(1,9): # j= 1..8, but A[8,j] and A[j,8] do not exist,
# if you insist on 1-based indeces, numpy still expects 0... n-1,
# so you'll have to subtract 1 from each index to use them
B[i-1,j-1] = A[i-1,j-1]
C = np.zeros((6,6),dtype=np.int)
D = np.matrix([[1,1,2,3,3,2,2,1],
[1,2,1,2,3,3,3,2],
[1,1,2,1,1,2,2,3],
[2,2,3,2,2,2,1,3],
[1,2,2,3,2,3,1,3],
[1,2,3,3,2,3,2,3],
[1,2,2,3,2,3,1,2],
[2,2,3,2,2,3,2,2]])
for k in np.arange(2,8): # k = 2..7
for l in np.arange(2,8): # l = 2..7 ; matrix B has indeces 0..7, so if you want inner points, you'll need 1..6
b = B[k-1,l-1] # so this is correct, gives you the inner matrix
if b == 8: # here b is a value in the matrix , not the index, careful not to mix those
# Matrix C is smaller than Matrix B ; yes C has indeces from 0..5 for k and l
# so to address C you'll need to subtract 2 from the k,l that you defined in the for loop
C[k-2,l-2] = C[k-2,l-2] + 1*D[k-1,l-1]
print C
output:
[[2 0 0 0 0 0]
[1 2 0 0 0 0]
[0 3 0 0 0 0]
[0 0 0 2 0 0]
[0 0 0 2 0 0]
[0 0 0 0 3 0]]
But there are more elegant ways to do it. In particular look up slicing, ( numpy conditional array arithmetic, possibly scipy threshold.All of the below should be much faster than Python loops too (numpy loops are written in C).
B=np.copy(A) #if you need a copy of A, this is the way
# one quick way to make a matrix that's 1 whereever A==8, and is smaller
from scipy import stats
B1=stats.threshold(A, threshmin=8, threshmax=8, newval=0)/8 # make a matrix with ones where there is an 8
B1=B1[1:-1,1:-1]
print B1
#another quick way to make a matrix that's 1 whereever A==8
B2 = np.zeros((8,8),dtype=np.int)
B2[A==8]=1
B2=B2[1:-1,1:-1]
print B2
# the following would obviously work with either B1 or B2 (which are the same)
print np.multiply(B2,D[1:-1,1:-1])
Output:
[[1 0 0 0 0 0]
[1 1 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]]
[[1 0 0 0 0 0]
[1 1 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]]
[[2 0 0 0 0 0]
[1 2 0 0 0 0]
[0 3 0 0 0 0]
[0 0 0 2 0 0]
[0 0 0 2 0 0]
[0 0 0 0 3 0]]