I\'m having trouble figuring out how to effective map across multiple parameters and variables within a tbl to generate new variables.
In the \"real\" version, I basica
Consider a vectorized approach (forgive me for non-tidyverse data wrangling) where all new columns can be handled in one call. Use seed(888) before random data to reproduce output:
f1 <- function(df, vars) {
df[paste0("d.", vars)] <- df$p * df[vars] * df$c
return(df)
}
newpracdf <- f1(pracdf, c("low.a","high.a","med.a","med.b","low.b","high.b"))
Output
# # A tibble: 26 x 15
# ID p med.a med.b c low.a low.b high.a high.b d.low.a d.high.a d.med.a d.med.b d.low.b d.high.b
#
# 1 a 122.9573 0.65746601 0.43123587 0.81314570 0.52597281 0.3449887 0.7889592 0.5174830 52.587917 78.881876 65.734897 43.115909 34.492727 51.739091
# 2 b 412.0127 0.19793909 0.77148952 0.26039116 0.15835127 0.6171916 0.2375269 0.9257874 16.988630 25.482945 21.235787 82.768834 66.215068 99.322601
# 3 c 155.1248 0.30834064 0.99850558 0.57853922 0.24667251 0.7988045 0.3700088 1.1982067 22.137823 33.206735 27.672279 89.611689 71.689351 107.534027
# 4 d 715.3769 0.85517040 0.81715464 0.84196723 0.68413632 0.6537237 1.0262045 0.9805856 412.071636 618.107455 515.089546 492.191742 393.753393 590.630090
# 5 e 790.5284 0.12617255 0.59290522 0.54879020 0.10093804 0.4743242 0.1514071 0.7114863 43.790379 65.685568 54.737973 257.222588 205.778070 308.667105
# 6 f 193.6968 0.15173488 0.93054996 0.08587380 0.12138791 0.7444400 0.1820819 1.1166600 2.019104 3.028655 2.523879 15.478286 12.382629 18.573943
# 7 g 451.6000 0.88123996 0.62858787 0.12546384 0.70499197 0.5028703 1.0574880 0.7543054 39.944473 59.916709 49.930591 35.615457 28.492365 42.738548
# 8 h 342.3741 0.09952918 0.56932309 0.10980862 0.07962334 0.4554585 0.1194350 0.6831877 2.993489 4.490234 3.741861 21.404056 17.123245 25.684867
# 9 i 143.9489 0.42407685 0.94929822 0.02754267 0.33926148 0.7594386 0.5088922 1.1391579 1.345083 2.017624 1.681353 3.763718 3.010975 4.516462
# 10 j 911.8069 0.25822441 0.08934875 0.55244369 0.20657953 0.0714790 0.3098693 0.1072185 104.058645 156.087967 130.073306 45.006930 36.005544 54.008316
# # ... with 16 more rows