I\'m attempting to populate a column in a data frame based on whether the index value of that record falls within a range defined by two columns in another data frame.
d
You can use IntervalIndex (requires v0.20.0).
First construct the index:
df2.index = pd.IntervalIndex.from_arrays(df2['START'], df2['STOP'], closed='both')
df2
Out:
START STOP CLASS
[2, 3] 2 3 1
[5, 7] 5 7 2
[8, 8] 8 8 3
Now if you index into the second DataFrame it will lookup the value in the intervals. For example,
df2.loc[6]
Out:
START 5
STOP 7
CLASS 2
Name: [5, 7], dtype: int64
returns the second class. I don't know if it can be used with merge or with merge_asof but as an alternative you can use map:
df1['CLASS'] = df1.index.to_series().map(df2['CLASS'])
Note that I first converted the index to a Series to be able to use the Series.map method. This results in
df1
Out:
a CLASS
0 4 NaN
1 45 NaN
2 7 1.0
3 5 1.0
4 48 NaN
5 44 2.0
6 22 2.0
7 89 2.0
8 45 3.0
9 44 NaN
10 23 NaN