Specific pandas columns as arguments in new column of df.apply outputs

前端 未结 2 449
渐次进展
渐次进展 2021-01-24 18:37

Given a pandas DataFrame as below:

import pandas as pd
from sklearn.metrics import mean_squared_error

    df = pd.DataFrame.from_dict(  
         {\'row\': [\'a         


        
2条回答
  •  一整个雨季
    2021-01-24 19:00

    The df.apply approach:

    df['rmse'] = df.apply(lambda x: mean_squared_error(x[['a','b','c']], x[['d','e','y']])**0.5, axis=1)
    
    col     a     b     c     d     e     y      rmse
    row                                              
    a    0.00 -0.80 -0.60 -0.30  0.80  0.01  1.003677
    b   -0.80  0.00  0.50  0.70 -0.90  0.01  1.048825
    c   -0.60  0.50  0.00  0.30  0.10  0.01  0.568653
    d   -0.30  0.70  0.30  0.00  0.20  0.01  0.375988
    e    0.80 -0.90  0.10  0.20  0.00  0.01  0.626658
    y    0.01  0.01  0.01  0.01  0.01  0.00  0.005774
    

提交回复
热议问题