I am trying to shift the Pandas dataframe column data by group of first index. Here is the demo code:
In [8]: df = mul_df(5,4,3)
In [9]: df
Out[9]:
similar question and added answer with that works for shift in either direction and magnitude: pandas: setting last N rows of multi-index to Nan for speeding up groupby with shift
Code (including test setup) is:
#
# the function to use in apply
#
def replace_shift_overlap(grp,col,N,value):
if (N > 0):
grp[col][:N] = value
else:
grp[col][N:] = value
return grp
length = 5
groups = 3
rng1 = pd.date_range('1/1/1990', periods=length, freq='D')
frames = []
for x in xrange(0,groups):
tmpdf = pd.DataFrame({'date':rng1,'category':int(10000000*abs(np.random.randn())),'colA':np.random.randn(length),'colB':np.random.randn(length)})
frames.append(tmpdf)
df = pd.concat(frames)
df.sort(columns=['category','date'],inplace=True)
df.set_index(['category','date'],inplace=True,drop=True)
shiftBy=-1
df['tmpShift'] = df['colB'].shift(shiftBy)
#
# the apply
#
df = df.groupby(level=0).apply(replace_shift_overlap,'tmpShift',shiftBy,np.nan)
# Yay this is so much faster.
df['newColumn'] = df['tmpShift'] / df['colA']
df.drop('tmpShift',1,inplace=True)
EDIT: Note that the initial sort really eats into the effectiveness of this. So in some cases the original answer is more effective.