I have a matrix:
A = [1 1 1
2 2 2
3 3 3]
Is there a vectorized way of obtaining:
B = [1 0 0
0 1 0
0 0
This is one solution using mod and sub2ind:
%// example data
data = reshape(1:9,3,3).' %'
n = 3; %// assumed to be known
data =
1 2 3
4 5 6
7 8 9
%// row indices
rows = 1:numel(data);
%// column indices
cols = mod(rows-1,n) + 1;
%// pre-allocation
out = zeros(n*n,n);
%// linear indices
linIdx = sub2ind(size(out),rows,cols);
%// assigning
out(linIdx) = data.'
out =
1 0 0
0 2 0
0 0 3
4 0 0
0 5 0
0 0 6
7 0 0
0 8 0
0 0 9
Or if you prefer saving lines of code, instead of readability:
out = zeros(n*n,n);
out(sub2ind(size(out),1:numel(data),mod((1:numel(data))-1,n) + 1)) = data.'
Two other fast solutions, but not faster than the others:
%// #1
Z = blockproc(A,[1 size(A,2)],@(x) diag(x.data));
%// #2
n = size(A,2);
Z = zeros(n*n,n);
Z( repmat(logical(eye(n)),n,1) ) = A;
function [t] = bench()
A = magic(200);
% functions to compare
fcns = {
@() thewaywewalk(A);
@() lhcgeneva(A);
@() rayryeng(A);
@() rlbond(A);
};
% timeit
t = zeros(4,1);
for ii = 1:10;
t = t + cellfun(@timeit, fcns);
end
format long
end
function Z = thewaywewalk(A)
n = size(A,2);
rows = 1:numel(A);
cols = mod(rows-1,n) + 1;
Z = zeros(n*n,n);
linIdx = sub2ind(size(Z),rows,cols);
Z(linIdx) = A.';
end
function Z = lhcgeneva(A)
sz = size(A);
Z = zeros(sz(1)*sz(2), sz(2));
for i = 1 : sz(1)
Z((i-1)*sz(2)+1:i*sz(2), :) = diag(A(i, :));
end
end
function Z = rayryeng(A)
A = A.';
Z = full(sparse(1:numel(A), repmat(1:size(A,2),1,size(A,1)), A(:)));
end
function Z = rlbond(A)
D = cellfun(@diag,mat2cell(A, ones(size(A,1), 1), size(A,2)), 'UniformOutput', false);
Z = vertcat(D{:});
end
ans =
0.322633905428601 %// thewaywewalk
0.550931853207228 %// lhcgeneva
0.254718792359946 %// rayryeng - Winner!
0.898236688657039 %// rlbond