As I understand LU factorization, it means that a matrix A can be written as A = LU for a lower-triangular matrix L and an upper-triangular matrix U.
However, the fu
To add to @DomJack: Changing the permutation (aka reordering) can also affect the number of non-zeros in the L and U factors. Thus, reordering can result in a more efficient factorization, memory-wise.