numpy 3d to 2d transformation based on 2d mask array

前端 未结 2 382
栀梦
栀梦 2021-01-19 08:36

If I have an ndarray like this:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]         


        
2条回答
  •  青春惊慌失措
    2021-01-19 09:20

    I use index_at() to create the full index:

    import numpy as np
    
    def index_at(idx, shape, axis=-1):
        if axis<0:
            axis += len(shape)
        shape = shape[:axis] + shape[axis+1:]
        index = list(np.ix_(*[np.arange(n) for n in shape]))
        index.insert(axis, idx)
        return tuple(index)
    
    a = np.random.randint(0, 10, (3, 4, 5))
    
    axis = 1
    idx = np.argmax(a, axis=axis)
    print a[index_at(idx, a.shape, axis=axis)]
    print np.max(a, axis=axis)
    

提交回复
热议问题