Below you find the code I wrote to calculate a relative change in value of df.a and df.b while df is a dataframe. What has to be calculated is basically df[\"c\"] = df
Ok, I get the result you want, but this is still way too complicated and unefficient. I would be interested to see a superior solution:
import pandas as pd
import numpy as np
import datetime
randn = np.random.randn
rng = pd.date_range('1/1/2011', periods=10, freq='D')
df = pd.DataFrame({'a': [1.1, 1.2, 2.3, 1.4, 1.5, 1.8, 0.7, 1.8, 1.9, 2.0], 'b': [1.1, 1.5, 1.3, 1.6, 1.5, 1.1, 1.5, 1.7, 2.1, 2.1],'c':[None] * 10},index=rng)
df["d"]= [0,0,0,0,0,0,0,0,0,0]
df["t"]= np.arange(len(df))
tolerance = 0.3
df['d1'] = df.a/df.a.iloc[df.d].values > df.b/df.b.iloc[df.d].values * (1+tolerance)
df['d2'] = df.a/df.a.iloc[df.d].values * (1+tolerance) < df.b/df.b.iloc[df.d].values
df['e'] = df.d1*df.t
df['f'] = df.d2*df.t
df['g'] = df.e +df.f
df.ix[df.g > df.g.shift(1),"h"] = df.g * 1; df
df.h = df.h + 1
df.h = df.h.shift(1)
df['h'][0] = 0
df.h.fillna(method='ffill',inplace=True)
df["d"] = df.h
df["c"] = df.a/df.a.iloc[df.d].values
and that's the result:
a b c d t d1 d2 e f g h
2011-01-01 1.1 1.1 1.000000 0 0 False False 0 0 0 0
2011-01-02 1.2 1.5 1.090909 0 1 False False 0 0 0 0
2011-01-03 2.3 1.3 2.090909 0 2 True False 2 0 2 0
2011-01-04 1.4 1.6 1.000000 3 3 False False 0 0 0 3
2011-01-05 1.5 1.5 1.071429 3 4 False False 0 0 0 3
2011-01-06 1.8 1.1 1.285714 3 5 True False 5 0 5 3
2011-01-07 0.7 1.5 1.000000 6 6 False True 0 6 6 6
2011-01-08 1.8 1.7 1.000000 7 7 False False 0 0 0 7
2011-01-09 1.9 2.1 1.055556 7 8 False False 0 0 0 7
2011-01-10 2.0 2.1 1.111111 7 9 False False 0 0 0 7
from here you can easily delete rows with e.g. del df['g']