I have a file.csv with ~15k rows that looks like this
SAMPLE_TIME, POS, OFF, HISTOGRAM
2015-07-15 16:41:56, 0-0-0-0-3, 1,
So how about this. I made a csv from your sample data.
When I import lines:
with open('test.csv','rb') as f:
lines = list(csv.reader(f))
headers, values =lines[0],lines[1:]
to generate nice header names, use this line:
headers = [i or ind for ind, i in enumerate(headers)]
so because of how (I assume) csv works, headers should have a bunch of empty string values. empty strings evaluate to False, so this comprehension returns numbered columns for each column without a header.
Then just make a df:
df = pd.DataFrame(values,columns=headers)
which looks like:
11: SAMPLE_TIME POS OFF HISTOGRAM 4 5 6 7 8 9 \
0 15/07/2015 16:41 0-0-0-0-3 1 2 0 5 59 0 0 0
1 15/07/2015 16:42 0-0-0-0-3 1 0 0 5 9 0 0 0
2 15/07/2015 16:43 0-0-0-0-3 1 0 0 5 5 0 0 0
3 15/07/2015 16:44 0-0-0-0-3 1 2 0 5 0 0 0 0
... 12 13 14 15 16 17 18 19 20 21
0 ... 2 0 0 0 0 0 0 0 0 0
1 ... 2 0 0 0 50 0
2 ... 2 0 0 0 0 4 0 0 0
3 ... 2 0 0 0 6 0 0 0 0
[4 rows x 22 columns]