Pandas merge on `datetime` or `datetime` in `datetimeIndex`

后端 未结 2 1539
[愿得一人]
[愿得一人] 2021-01-18 00:56

Currently I have two data frames representing excel spreadsheets. I wish to join the data where the dates are equal. This is a one to many join as one spread sheet has a dat

2条回答
  •  我在风中等你
    2021-01-18 01:26

    Let's use this numpy method by @piRSquared:

    df1 = pd.DataFrame({'date': ['2015-01-01', '2015-01-02', '2015-01-03'], 
                        'data': ['A', 'B', 'C']})
    df2 = pd.DataFrame({'date': ['2015-01-01 to 2015-01-02', '2015-01-01 to 2015-01-02', '2015-01-02 to 2015-01-03'], 
                        'data': ['E', 'F', 'G']})
    
    df2[['start', 'end']] = df2['date'].str.split(' to ', expand=True)
    df2['start'] = pd.to_datetime(df2.start)
    df2['end'] = pd.to_datetime(df2.end)
    df1['date'] = pd.to_datetime(df1['date'])
    
    a = df1['date'].values
    bh = df2['end'].values
    bl = df2['start'].values
    
    i, j = np.where((a[:, None] >= bl) & (a[:, None] <= bh))
    
    pd.DataFrame(np.column_stack([df1.values[i], df2.values[j]]),
                 columns=df1.columns.append(df2.columns))
    

    Output:

                      date data                      date data                start                  end
    0  2015-01-01 00:00:00    A  2015-01-01 to 2015-01-02    E  2015-01-01 00:00:00  2015-01-02 00:00:00
    1  2015-01-01 00:00:00    A  2015-01-01 to 2015-01-02    F  2015-01-01 00:00:00  2015-01-02 00:00:00
    2  2015-01-02 00:00:00    B  2015-01-01 to 2015-01-02    E  2015-01-01 00:00:00  2015-01-02 00:00:00
    3  2015-01-02 00:00:00    B  2015-01-01 to 2015-01-02    F  2015-01-01 00:00:00  2015-01-02 00:00:00
    4  2015-01-02 00:00:00    B  2015-01-02 to 2015-01-03    G  2015-01-02 00:00:00  2015-01-03 00:00:00
    5  2015-01-03 00:00:00    C  2015-01-02 to 2015-01-03    G  2015-01-02 00:00:00  2015-01-03 00:00:00
    

提交回复
热议问题