I have a 3D array of binary data. I want to project this to 3 2D images - side on, head on, birds eye.
I have written the code:
for x in range(data.s
When I have 3D data, I tend to think of it as a 'cube' with rows, columns, and slices - or panels, of 2D images. Each slice or panel is a 2D image that is of dimensions (rows, cols). I usually think of it like this:

with (0,0,0) being in the upper left corner of the front slice. With numpy indexing it is super easy to select just the portions of the 3D array that you are interested in without writing your own loops:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.set_printoptions(precision=2)
# Generate a 3D 'cube' of data
>>> data3D = np.random.uniform(0,10, 2*3*5).reshape((2,3,5))
>>> data3D
array([[[ 7.44, 1.14, 2.5 , 3.3 , 6.05],
[ 1.53, 8.91, 1.63, 8.95, 2.46],
[ 3.57, 3.29, 6.43, 8.81, 6.43]],
[[ 4.67, 2.67, 5.29, 7.69, 7.59],
[ 0.26, 2.88, 7.58, 3.27, 4.55],
[ 5.84, 9.04, 7.16, 9.18, 5.68]]])
# Grab some "views" of the data
>>> front = data3D[:,:,0] # all rows and columns, first slice
>>> back = data3D[:,:,-1] # all rows and cols, last slice
>>> top = data3D[0,:,:] # first row, all cols, all slices
>>> bottom = data3D[-1,:,:] # last row, all cols, all slices
>>> r_side = data3D[:,-1,:] # all rows, last column, all slices
>>> l_side = data3D[:,0,:] # all rows, first column, all slices
See what the front looks like:
>>> plt.imshow(front, interpolation='none')
>>> plt.show()
