Fortran: There are two large arrays of integers, the goal is to find out if they have any number in common or not, how?
You may conside
Maybe this will work.
added from here
The main idea is using intrinsic function ANY().
Now we try to delete duplicate numbers in the arrays.
First we sort the arrays. Quick-sort can be written concisely in a Haskell-like manner. (Reference : Arjen Markus, ACM Fortran Forum 27 (2008) 2-5.) But because recursion consumes stacks, Shell-sort might be a better choice, which does not require extra memories. It is often stated in textbooks that Shell-sort works in O(N^3/2~5/4), but it works much faster using special gap functions.wikipedia
Next we delete duplicate numbers by comparing successive elements using the idea of zip pairs. [x(2)/=x(1), ..., x(n)/=x(n-1)] We need to add extra one element to match array size. The intrinsic function PACK() is used as a Filter.
to here
program SetAny
implicit none
integer, allocatable :: ia(:), ib(:)
! fortran2008
! allocate(ia, source = [1,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5])
! allocate(ib, source = [0,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9])
allocate(ia(size([1,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5])))
allocate(ib(size([0,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9])))
ia = [1,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5,2,3,4,5]
ib = [0,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9,6,7,8,9]
print *, isin( shrnk( ia ), shrnk( ib ) )
stop
contains
logical pure function isin(ia, ib)
integer, intent(in) :: ia(:), ib(:)
integer :: i
isin = .true.
do i = 1, size(ib)
if ( any(ia == ib(i)) ) return
end do
isin = .false.
return
end function isin
pure function shrnk(ia) result(res)
integer, intent(in) :: ia(:)
integer, allocatable :: res(:) ! f2003
integer :: iwk(size(ia))
iwk = qsort(ia)
res = pack(iwk, [.true., iwk(2:) /= iwk(1:)]) ! f2003
return
end function shrnk
pure recursive function qsort(ia) result(res)
integer, intent(in) :: ia(:)
integer :: res(size(ia))
if (size(ia) .lt. 2) then
res = ia
else
res = [ qsort( pack(ia(2:), ia(2:) < ia(1)) ), ia(1), qsort( pack(ia(2:), ia(2:) >= ia(1)) ) ]
end if
return
end function qsort
end program SetAny
Shell sort
pure function ssort(ix) ! Shell Sort
integer, intent(in) :: ix(:)
integer, allocatable :: ssort(:)
integer :: i, j, k, kmax, igap, itmp
ssort = ix
kmax = 0
do ! Tokuda's gap sequence ; h_k=Ceiling( (9(9/4)^k-4)/5 ), h_k < 4N/9 ; O(N)~NlogN
if ( ceiling( (9.0 * (9.0 / 4.0)**(kmax + 1) - 4.0) / 5.0 ) > size(ix) * 4.0 / 9.0 ) exit
kmax = kmax + 1
end do
do k = kmax, 0, -1
igap = ceiling( (9.0 * (9.0 / 4.0)**k - 4.0) / 5.0 )
do i = igap, size(ix)
do j = i - igap, 1, -igap
if ( ssort(j) <= ssort(j + igap) ) exit
itmp = ssort(j)
ssort(j) = ssort(j + igap)
ssort(j + igap) = itmp
end do
end do
end do
return
end function ssort