Suppose I have the following dataframe:
pd.DataFrame({\'col1\': [\"a\", \"a\", np.nan, np.nan, np.nan],
\'override1\': [\"b\", np.nan, \"b\",
A straightforward solution involves forward filling and picking off the last column. This was mentioned in the comments.
df.ffill(1).iloc[:,-1].to_frame(name='collapsed')
collapsed
0 c
1 a
2 b
3 c
4 NaN
If you're interested in performance, we can use a modified version of Divakar's justify function:
pd.DataFrame({'collapsed': justify(
df.values, invalid_val=np.nan, axis=1, side='right')[:,-1]
})
collapsed
0 c
1 a
2 b
3 c
4 NaN
Reference.
def justify(a, invalid_val=0, axis=1, side='left'): """ Justifies a 2D array Parameters ---------- A : ndarray Input array to be justified axis : int Axis along which justification is to be made side : str Direction of justification. It could be 'left', 'right', 'up', 'down' It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0. """ if invalid_val is np.nan: mask = pd.notna(a) # modified for strings else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val, dtype=a.dtype) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out