I am trying to use the trained model based on the Cifar10 tutorial and would like to feed
it with an external image 32x32 (jpg or png).
My goal is to be able to get
The original source code in cifar10_eval.py can also be used for testing own individual images as it is shown in the following console output
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar10_eval.py --run_once True 2>/dev/null
[ -0.63916457 -3.31066918 2.32452989 1.51062226 15.55279636
-0.91585422 1.26451302 -4.11891603 -7.62230825 -4.29096413]
deer
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar2bin.py matchbox.png input.bin
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$ python cifar10_eval.py --run_once True 2>/dev/null
[ -1.30562115 12.61497402 -1.34208572 -1.3238833 -6.13368177
-1.17441642 -1.38651907 -4.3274951 2.05489922 2.54187846]
automobile
nbatfai@robopsy:~/Robopsychology/repos/gpu/tensorflow/tensorflow/models/image/cifar10$
and code snippet
#while step < num_iter and not coord.should_stop():
# predictions = sess.run([top_k_op])
print(sess.run(logits[0]))
classification = sess.run(tf.argmalogits[0], 0))
cifar10classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
print(cifar10classes[classification])
#true_count += np.sum(predictions)
step += 1
# Compute precision @ 1.
precision = true_count / total_sample_count
# print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
More details can be found in the post How can I test own image to Cifar-10 tutorial on Tensorflow?