I want to modify some classes in the standard library to use a different set of globals the ones that other classes in that module use.
This exampl
Okay, here's a proof-of-concept that shows how to do it. Note that it only goes one level deep -- properties and nested functions are not adjusted. To implement that, as well as make this more robust, each function's globals() should be compared to the globals() that should be replaced, and only make the substitution if they are the same.
def migrate_class(cls, globals):
"""Recreates a class substituting the passed-in globals for the
globals already in the existing class. This proof-of-concept
version only goes one-level deep (i.e. properties and other nested
functions are not changed)."""
name = cls.__name__
bases = cls.__bases__
new_dict = dict()
if hasattr(cls, '__slots__'):
new_dict['__slots__'] = cls.__slots__
for name in cls.__slots__:
if hasattr(cls, name):
attr = getattr(cls, name)
if callable(attr):
closure = attr.__closure__
defaults = attr.__defaults__
func_code = attr.__code__
attr = FunctionType(func_code, globals)
new_dict[name] = attr
if hasattr(cls, '__dict__'):
od = getattr(cls, '__dict__')
for name, attr in od.items():
if callable(attr):
closure = attr.__closure__
defaults = attr.__defaults__
kwdefaults = attr.__kwdefaults__
func_code = attr.__code__
attr = FunctionType(func_code, globals, name, defaults, closure)
if kwdefaults:
attr.__kwdefaults__ = kwdefaults
new_dict[name] = attr
return type(name, bases, new_dict)
After having gone through this excercise, I am really curious as to why you need to do this?