I feel that I must be missing something obvious. Decomposing a list into the head and tail and then recursing over the tail is a standard functional programming technique, y
Actually ArraySlice is Sliceable, so you can recurse on
ArraySlice:
func recurseArray(arr: ArraySlice) -> [Int] {
guard let first = arr.first else {
return []
}
let rest = recurseArray(dropFirst(arr))
let next = rest.first ?? 0
return [first + next] + rest
}
with a wrapper function which is called only once at the top level:
func recurseArray(arr: [Int]) -> [Int] {
return recurseArray(arr[arr.startIndex ..< arr.endIndex])
}
I don't have a solution for your second more general problem.
The API docs for Sliceable state that SubSlice should be
Sliceable itself (which is the case for all known Sliceable
types).
I have therefore the feeling that it should be possible by requesting
that T.SubSlice is itself sliceable with the identical SubSlice
type, however this does not compile:
func recurseSeq(list: T.SubSlice) -> [Int] {
guard let first = list.first else {
return []
}
let rest = recurseSeq(dropFirst(list) as T.SubSlice)
// error: cannot invoke 'recurseSeq' with an argument list of type '(T.SubSlice)'
let next = rest.first ?? 0
return [first + next] + rest
}
The compiler accepts that dropFirst(list) can be cast to T.SubSlice,
but refuses to call recurseSeq() on that value, which I do not
understand.
Alternatively, you can recurse on a GeneratorType:
func recurseGen(inout gen: G) -> [Int] {
guard let first = gen.next() else {
return []
}
let rest = recurseGen(&gen)
let next = rest.first ?? 0
return [first + next] + rest
}
with a wrapper that takes a SequenceType:
func recurseSeq(list: T) -> [Int] {
var gen = list.generate()
return recurseGen(&gen)
}
Arrays and array slices all conform to SequenceType, so that should
work in all your cases.