i\'am still trying to run Tensorflow with own image data. I was able to create a .tfrecords file with the conevert_to() function from this example link
Now i i\'d l
To add to @mrry 's answer, supposing your string is ascii
, you can:
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def write_proto(cls, filepath, ..., item_id): # itemid is an ascii encodable string
# ...
with tf.python_io.TFRecordWriter(filepath) as writer:
example = tf.train.Example(features=tf.train.Features(feature={
# write it as a bytes array, supposing your string is `ascii`
'item_id': _bytes_feature(bytes(item_id, encoding='ascii')), # python 3
# ...
}))
writer.write(example.SerializeToString())
Then:
def parse_single_example(cls, example_proto, graph=None):
features_dict = tf.parse_single_example(example_proto,
features={'item_id': tf.FixedLenFeature([], tf.string),
# ...
})
# decode as uint8 aka bytes
instance.item_id = tf.decode_raw(features_dict['item_id'], tf.uint8)
and then when you get it back in your session, transform back to string:
item_id, ... = session.run(your_tfrecords_iterator.get_next())
print(str(item_id.flatten(), 'ascii')) # python 3
I took the uint8
trick from this related so answer. Works for me but comments/improvements welcome.