I am looking at the section 4.11 of The Open Group Base Specifications Issue 7 (IEEE Std 1003.1, 2013 Edition), section 4.11 document, which spells out the memory synchroniz
is there implied memory barrier before the thread starts running the thread function so that it unfailingly sees the memory modifications synchronized by pthread_create()?
Yes. Otherwise there would be no point to pthread_create acting as memory synchronization (barrier).
(This is afaik. not explicitly stated by posix, (nor does posix define a standard memory model), so you'll have to decide whether you trust your implementation to do the only sane thing it possibly could - ensure synchronization before the new thread is run- I would not worry particularly about it).
Special case (which would as a special case answer the above question): does a context switch provide memory synchronization, that is, when the execution of a process or thread is started or resumed, is the memory synchronized with respect to any memory synchronization by other threads of execution?
No, a context switch does not act as a barrier.
Thread #1 creates a constant object allocated from heap. Thread #1 creates a new thread #2 that reads the data from the object. If we can assume the new thread #2 starts with memory synchronized then everything is fine. However, if the CPU core running the new thread has copy of previously allocated but since discarded data in its cache memory instead of the new value, then it might have wrong view of the state and the application may function incorrectly.
Since pthread_create must perform memory synchronization, this cannot happen. Any old memory that reside in a cpu cache on another core must be invalidated. (Luckily, the commonly used platforms are cache coherent, so the hardware takes care of that).
Now, if you change your object after you've created your 2. thread, you need memory synchronization again so all parties can see the changes, and otherwise avoid race conditions. pthread mutexes are commonly used to achieve that.