My goal is to create a function that, when looped over multiple variables of a data frame, will return a new data frame containing the percents and 95% confidence intervals
You can also keep the function mainly intact and use lapply
over it:
vars <- c("cyl", "am")
lapply(vars, t1.props, data=mtcars)
[[1]]
variable level ci.95
1 cyl 4 34.38 (19.50, 53.11)
2 cyl 6 21.88 (10.35, 40.45)
3 cyl 8 43.75 (27.10, 61.94)
[[2]]
variable level ci.95
1 am 0 59.38 (40.94, 75.5)
2 am 1 40.62 (24.50, 59.06)
And combine them all into one data frame with:
lst <- lapply(vars, t1.props, data=mtcars)
do.call(rbind,lst)
Data
You must simplify the var
and var.name
assignments to:
t1.props <- function(x, data = NULL) {
# Grab dataframe and/or variable name
if(!missing(data)){
var <- data[,x]
} else {
var <- x
}
# Grab variable name for use in ouput
var.name <- x
# Omit observations with missing data
var.clean <- na.omit(var)
# Number of nonmissing observations
n <- length(var.clean)
# Grab levels of variable
levels <- sort(unique(var.clean))
# Create an empty data frame to store values
out <- data.frame(variable = NA,
level = NA,
ci.95 = NA)
# Estimate prop, se, and ci for each level of the variable
for(i in seq_along(levels)) {
prop <- paste0("prop", i)
se <- paste0("se", i)
log.prop <- paste0("log.trans", i)
log.se <- paste0("log.se", i)
log.l <- paste0("log.l", i)
log.u <- paste0("log.u", i)
lcl <- paste0("lcl", i)
ucl <- paste0("ucl", i)
# Find the proportion for each level of the variable
assign(prop, sum(var.clean == levels[i]) / n)
# Find the standard error for each level of the variable
assign(se, sd(var.clean == levels[i]) /
sqrt(length(var.clean == levels[i])))
# Perform a logit transformation of the original percentage estimate
assign(log.prop, log(get(prop)) - log(1 - get(prop)))
# Transform the standard error of the percentage to a standard error of its
# logit transformation
assign(log.se, get(se) / (get(prop) * (1 - get(prop))))
# Calculate the lower and upper confidence bounds of the logit
# transformation
assign(log.l,
get(log.prop) -
qt(.975, (length(var.clean == levels[i]) - 1)) * get(log.se))
assign(log.u,
get(log.prop) +
qt(.975, (length(var.clean == levels[i]) - 1)) * get(log.se))
# Finally, perform inverse logit transformations to get the confidence bounds
assign(lcl, exp(get(log.l)) / (1 + exp(get(log.l))))
assign(ucl, exp(get(log.u)) / (1 + exp(get(log.u))))
# Create a combined 95% CI variable for easy copy/paste into Word tables
ci.95 <- paste0(round(get(prop) * 100, 2), " ",
"(", sprintf("%.2f", round(get(lcl) * 100, 2)), ",", " ",
round(get(ucl) * 100, 2), ")")
# Populate the "out" data frame with values
out <- rbind(out, c(as.character(var.name), levels[i], ci.95))
}
# Remove first (empty) row from out
# But only in the first iteration
if (is.na(out[1,1])) {
out <- out[-1, ]
rownames(out) <- 1:nrow(out)
}
out
}