I would like to use the inverse_transform function for LabelEncoder on multiple columns.
This is the code I use for more than one columns when applying LabelEncoder
You do not need to modify it this way. It's already implemented as a method inverse_transform
.
Example:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
df = ["paris", "paris", "tokyo", "amsterdam"]
le_fitted = le.fit_transform(df)
inverted = le.inverse_transform(le_fitted)
print(inverted)
# array(['paris', 'paris', 'tokyo', 'amsterdam'], dtype='|S9')