I\'ve the following class diagram:
There\'s some unused class like BinaryOperator, but my real code needs them so I want to keep them also in t
I'd advise against using Karma to generate JSON. I'd advise strongly against ADAPT_ADT (it's prone to very subtle UB bugs and it means you're trying to adapt something that wasn't designed for it. Just say no).
Here's my take on it. Let's take the high road and be as unintrusive as possible. That means
operator<< to print json (because you may want to naturally print the expressions instead)It also means that what ever function is responsible for generating the JSON doesn't
Finally, I wouldn't want to intrude on the expression tree with anything JSON specific. The most that could be acceptable is an opaque friend declaration.
This might well be the most simplistic JSON representation, but it does the required subset and makes a number of smart choices (supporting duplicate properties, retaining property order for example):
#include
namespace json {
// adhoc JSON rep
struct Null {};
using String = std::string;
using Value = boost::make_recursive_variant<
Null,
String,
std::vector,
std::vector >
>::type;
using Property = std::pair;
using Object = std::vector;
using Array = std::vector;
}
That's all. This is fully functional. Let's prove it
Like with the Expression tree itself, let's not hardwire this, but instead create a pretty-printing IO manipulator:
#include
namespace json {
// pretty print it
struct pretty_io {
using result_type = void;
template
struct manip {
Ref ref;
friend std::ostream& operator<<(std::ostream& os, manip const& m) {
pretty_io{os,""}(m.ref);
return os;
}
};
std::ostream& _os;
std::string _indent;
void operator()(Value const& v) const {
boost::apply_visitor(*this, v);
}
void operator()(Null) const {
_os << "null";
}
void operator()(String const& s) const {
_os << std::quoted(s);
}
void operator()(Property const& p) const {
_os << '\n' << _indent; operator()(p.first);
_os << ": "; operator()(p.second);
}
void operator()(Object const& o) const {
pretty_io nested{_os, _indent+" "};
_os << "{";
bool first = true;
for (auto& p : o) { first||_os << ","; nested(p); first = false; }
_os << "\n" << _indent << "}";
}
void operator()(Array const& o) const {
pretty_io nested{_os, _indent+" "};
_os << "[\n" << _indent << " ";
bool first = true;
for (auto& p : o) { first||_os << ",\n" << _indent << " "; nested(p); first = false; }
_os << "\n" << _indent << "]";
}
};
Value to_json(Value const& v) { return v; }
template ()))>
pretty_io::manip pretty(T const& v) { return {to_json(v)}; }
}
The to_json thing dubs as a handy ADL-enabled extension point, you can already us it now:
std::cout << json::pretty("hello world"); // prints as a JSON String
To make the following work:
std::cout << json::pretty(plus1);
All we need is the appropriate to_json overload. We could jot it all in there, but we might end up needing to "friend" a function named to_json, worse still, forward declare types from the json namespace (json::Value at the very least). That's too intrusive. So, let's add anothe tiny indirection:
auto to_json(Expression const* expression) {
return serialization::call(expression);
}
The trick is to hide the JSON stuff inside an opaque struct that we can then befriend: struct serialization. The rest is straightforward:
struct serialization {
static json::Value call(Expression const* e) {
if (auto* f = dynamic_cast(e)) {
json::Array args;
for (auto& a : f->m_arguments)
args.push_back(call(a));
return json::Object {
{ "name", f->getName() },
{ "type", "Function" },
{ "arguments", args },
};
}
if (auto* v = dynamic_cast(e)) {
return json::Object {
{ "name", v->getName() },
{ "type", "Value" },
{ "value", v->getValue() },
};
}
return {}; // Null in case we didn't implement a node type
}
};
See it Live On Coliru
#include
#include
#include
#include
struct Expression {
virtual std::string getName() const = 0;
};
struct Value : Expression {
virtual std::string getValue() const = 0;
};
struct IntegerValue : Value {
IntegerValue(int value) : m_value(value) {}
virtual std::string getName() const override { return "IntegerValue"; }
virtual std::string getValue() const override { return boost::lexical_cast(m_value); }
private:
int m_value;
};
struct Function : Expression {
void addArgument(Expression *expression) { m_arguments.push_back(expression); }
virtual std::string getName() const override { return m_name; }
protected:
std::vector m_arguments;
std::string m_name;
friend struct serialization;
};
struct Plus : Function {
Plus() : Function() { m_name = "Plus"; }
};
///////////////////////////////////////////////////////////////////////////////
// A simple JSON facility
#include
namespace json {
// adhoc JSON rep
struct Null {};
using String = std::string;
using Value = boost::make_recursive_variant<
Null,
String,
std::vector,
std::vector >
>::type;
using Property = std::pair;
using Object = std::vector;
using Array = std::vector;
}
///////////////////////////////////////////////////////////////////////////////
// Pretty Print manipulator
#include
namespace json {
// pretty print it
struct pretty_io {
using result_type = void;
template
struct manip {
Ref ref;
friend std::ostream& operator<<(std::ostream& os, manip const& m) {
pretty_io{os,""}(m.ref);
return os;
}
};
std::ostream& _os;
std::string _indent;
void operator()(Value const& v) const {
boost::apply_visitor(*this, v);
}
void operator()(Null) const {
_os << "null";
}
void operator()(String const& s) const {
_os << std::quoted(s);
}
void operator()(Property const& p) const {
_os << '\n' << _indent; operator()(p.first);
_os << ": "; operator()(p.second);
}
void operator()(Object const& o) const {
pretty_io nested{_os, _indent+" "};
_os << "{";
bool first = true;
for (auto& p : o) { first||_os << ","; nested(p); first = false; }
_os << "\n" << _indent << "}";
}
void operator()(Array const& o) const {
pretty_io nested{_os, _indent+" "};
_os << "[\n" << _indent << " ";
bool first = true;
for (auto& p : o) { first||_os << ",\n" << _indent << " "; nested(p); first = false; }
_os << "\n" << _indent << "]";
}
};
Value to_json(Value const& v) { return v; }
template ()))>
pretty_io::manip pretty(T const& v) { return {to_json(v)}; }
}
///////////////////////////////////////////////////////////////////////////////
// Expression -> JSON
struct serialization {
static json::Value call(Expression const* e) {
if (auto* f = dynamic_cast(e)) {
json::Array args;
for (auto& a : f->m_arguments)
args.push_back(call(a));
return json::Object {
{ "name", f->getName() },
{ "type", "Function" },
{ "arguments", args },
};
}
if (auto* v = dynamic_cast(e)) {
return json::Object {
{ "name", v->getName() },
{ "type", "Value" },
{ "value", v->getValue() },
};
}
return {};
}
};
auto to_json(Expression const* expression) {
return serialization::call(expression);
}
int main() {
// Build expression 4 + 5 + 6 as 4 + (5 + 6)
Function *plus1 = new Plus();
Function *plus2 = new Plus();
Value *iv4 = new IntegerValue(4);
Value *iv5 = new IntegerValue(5);
Value *iv6 = new IntegerValue(6);
plus2->addArgument(iv5);
plus2->addArgument(iv6);
plus1->addArgument(iv4);
plus1->addArgument(plus2);
// Generate json string here, but how?
std::cout << json::pretty(plus1);
}
Output is picture-perfect from your question:
{
"name": "Plus",
"type": "Function",
"arguments": [
{
"name": "IntegerValue",
"type": "Value",
"value": "4"
},
{
"name": "Plus",
"type": "Function",
"arguments": [
{
"name": "IntegerValue",
"type": "Value",
"value": "5"
},
{
"name": "IntegerValue",
"type": "Value",
"value": "6"
}
]
}
]
}