I have nested JSON and like to have output in tabular structure. I am able to parse the JSON values individually , but having some problems in tabularizing it. I am able to
DataFrame
and DataSet
are much more optimized
than rdd
and there are a lot of options
to try with to reach to the solution we desire.
In my opinion, DataFrame
is developed to make the developers comfortable viewing data in tabular form so that logics can be implemented with ease. So I always suggest users to use dataframe
or dataset
.
Talking much less, I am posting you the solution below using dataframe
. Once you have a dataframe
, switching to rdd
is very easy.
Your desired solution is below (you will have to find a way to read json
file as its done with json string
below : thats an assignment for you :) good luck)
import org.apache.spark.sql.functions._
val json = """ { "level":{"productReference":{
"prodID":"1234",
"unitOfMeasure":"EA"
},
"states":[
{
"state":"SELL",
"effectiveDateTime":"2015-10-09T00:55:23.6345Z",
"stockQuantity":{
"quantity":1400.0,
"stockKeepingLevel":"A"
}
},
{
"state":"HELD",
"effectiveDateTime":"2015-10-09T00:55:23.6345Z",
"stockQuantity":{
"quantity":800.0,
"stockKeepingLevel":"B"
}
}
] }}"""
val rddJson = sparkContext.parallelize(Seq(json))
var df = sqlContext.read.json(rddJson)
df = df.withColumn("prodID", df("level.productReference.prodID"))
.withColumn("unitOfMeasure", df("level.productReference.unitOfMeasure"))
.withColumn("states", explode(df("level.states")))
.drop("level")
df = df.withColumn("state", df("states.state"))
.withColumn("effectiveDateTime", df("states.effectiveDateTime"))
.withColumn("quantity", df("states.stockQuantity.quantity"))
.withColumn("stockKeepingLevel", df("states.stockQuantity.stockKeepingLevel"))
.drop("states")
df.show(false)
This will give out put as
+------+-------------+-----+-------------------------+--------+-----------------+
|prodID|unitOfMeasure|state|effectiveDateTime |quantity|stockKeepingLevel|
+------+-------------+-----+-------------------------+--------+-----------------+
|1234 |EA |SELL |2015-10-09T00:55:23.6345Z|1400.0 |A |
|1234 |EA |HELD |2015-10-09T00:55:23.6345Z|800.0 |B |
+------+-------------+-----+-------------------------+--------+-----------------+
Now that you have desired output as dataframe
converting to rdd
is just calling .rdd
df.rdd.foreach(println)
will give output as below
[1234,EA,SELL,2015-10-09T00:55:23.6345Z,1400.0,A]
[1234,EA,HELD,2015-10-09T00:55:23.6345Z,800.0,B]
I hope this is helpful