I have nested JSON and like to have output in tabular structure. I am able to parse the JSON values individually , but having some problems in tabularizing it. I am able to
There are 2 versions of solutions to your question.
Version 1:
def main(Args : Array[String]): Unit = {
val conf = new SparkConf().setAppName("JSON Read and Write using Spark RDD").setMaster("local[1]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val salesSchema = StructType(Array(
StructField("prodID", StringType, true),
StructField("unitOfMeasure", StringType, true),
StructField("state", StringType, true),
StructField("effectiveDateTime", StringType, true),
StructField("quantity", StringType, true),
StructField("stockKeepingLevel", StringType, true)
))
val ReadAlljsonMessageInFile_RDD = sc.textFile("product_rdd.json")
val x = ReadAlljsonMessageInFile_RDD.map(eachJsonMessages => {
parse(eachJsonMessages)
}).map(insideEachJson=>{
implicit val formats = org.json4s.DefaultFormats
val prodID = (insideEachJson\ "level" \"productReference" \"prodID").extract[String].toString
val unitOfMeasure = (insideEachJson\ "level" \ "productReference" \"unitOfMeasure").extract[String].toString
val state= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"state").extract[String]).toString()
val effectiveDateTime= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"effectiveDateTime").extract[String]).toString
val quantity= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"stockQuantity").extract[JValue]).map(x=>(x\"quantity").extract[Double]).
toString
val stockKeepingLevel= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"stockQuantity").extract[JValue]).map(x=>(x\"stockKeepingLevel").extract[String]).
toString
Row(prodID,unitOfMeasure,state,effectiveDateTime,quantity,stockKeepingLevel)
})
sqlContext.createDataFrame(x,salesSchema).show(truncate = false)
}
This would give you following output:
+------+-------------+----------------+----------------------------------------------------------+-------------------+-----------------+
|prodID|unitOfMeasure|state |effectiveDateTime |quantity |stockKeepingLevel|
+------+-------------+----------------+----------------------------------------------------------+-------------------+-----------------+
|1234 |EA |List(SELL, HELD)|List(2015-10-09T00:55:23.6345Z, 2015-10-09T00:55:23.6345Z)|List(1400.0, 800.0)|List(A, B) |
+------+-------------+----------------+----------------------------------------------------------+-------------------+-----------------+
Version 2:
def main(Args : Array[String]): Unit = {
val conf = new SparkConf().setAppName("JSON Read and Write using Spark RDD").setMaster("local[1]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val salesSchema = StructType(Array(
StructField("prodID", StringType, true),
StructField("unitOfMeasure", StringType, true),
StructField("state", ArrayType(StringType, true), true),
StructField("effectiveDateTime", ArrayType(StringType, true), true),
StructField("quantity", ArrayType(DoubleType, true), true),
StructField("stockKeepingLevel", ArrayType(StringType, true), true)
))
val ReadAlljsonMessageInFile_RDD = sc.textFile("product_rdd.json")
val x = ReadAlljsonMessageInFile_RDD.map(eachJsonMessages => {
parse(eachJsonMessages)
}).map(insideEachJson=>{
implicit val formats = org.json4s.DefaultFormats
val prodID = (insideEachJson\ "level" \"productReference" \"prodID").extract[String].toString
val unitOfMeasure = (insideEachJson\ "level" \ "productReference" \"unitOfMeasure").extract[String].toString
val state= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"state").extract[String])
val effectiveDateTime= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"effectiveDateTime").extract[String])
val quantity= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"stockQuantity").extract[JValue]).map(x=>(x\"quantity").extract[Double])
val stockKeepingLevel= (insideEachJson \ "level" \"states").extract[List[JValue]].
map(x=>(x\"stockQuantity").extract[JValue]).map(x=>(x\"stockKeepingLevel").extract[String])
Row(prodID,unitOfMeasure,state,effectiveDateTime,quantity,stockKeepingLevel)
})
sqlContext.createDataFrame(x,salesSchema).show(truncate = false)
}
This would give you following output:
+------+-------------+------------+------------------------------------------------------+---------------+-----------------+
|prodID|unitOfMeasure|state |effectiveDateTime |quantity |stockKeepingLevel|
+------+-------------+------------+------------------------------------------------------+---------------+-----------------+
|1234 |EA |[SELL, HELD]|[2015-10-09T00:55:23.6345Z, 2015-10-09T00:55:23.6345Z]|[1400.0, 800.0]|[A, B] |
+------+-------------+------------+------------------------------------------------------+---------------+-----------------+
The difference between Version 1 & 2 is of schema. In Version 1 you are casting every column into String whereas in Version 2 they are being casted into Array.