Let\'s say I have a dataframe with the following structure:
observation
d1 1
d2 1
d3 -1
d4 -1
d5 -1
d6 -1
d7 1
d8 1
d9 1
d10 1
d11 -1
d12 -1
d13
Here's an example using real date.datetime
objects as indices.
import pandas as pd
import numpy as np
import datetime
import random
df = pd.DataFrame({'x': np.random.randn(40)}, index = [date.fromordinal(random.randint(start_date, end_date)) for i in range(40)])
def filter_on_datetime(df, year = None, month = None, day = None):
if all(d is not None for d in {year, month, day}):
idxs = [idx for idx in df.index if idx.year == year and idx.month == month and idx.day == day]
elif year is not None and month is not None and day is None:
idxs = [idx for idx in df.index if idx.year == year and idx.month == month]
elif year is not None and month is None and day is None:
idxs = [idx for idx in df.index if idx.year == year]
elif year is None and month is not None and day is not None:
idxs = [idx for idx in df.index if idx.month == month and idx.day == day]
elif year is None and month is None and day is not None:
idxs = [idx for idx in df.index if idx.day == day]
elif year is None and month is not None and day is None:
idxs = [idx for idx in df.index if idx.month == month]
elif year is not None and month is None and day is not None:
idxs = [idx for idx in df.index if idx.year == year and idx.day == day]
else:
idxs = df.index
return df.ix[idxs]
Running this:
>>> print(filter_on_datetime(df = df, year = 2016, month = 2))
x
2016-02-01 -0.141557
2016-02-03 0.162429
2016-02-05 0.703794
2016-02-07 -0.184492
2016-02-09 -0.921793
2016-02-12 1.593838
2016-02-17 2.784899
2016-02-19 0.034721
2016-02-26 -0.142299