I\'m using the following piece of code to create a banded matrix from a generator g:
def banded(g, N):
\"\"\"Creates a `g` generated banded
Here's one with np.lib.stride_tricks.as_strided to give us a 2D view into a zeros padded 1D version of the input and as such pretty memory efficient and hence performant too. This trick had been explored numerous times - 1,2.
Thus, the implementation would be -
def sliding_windows(a, W):
a = np.asarray(a)
p = np.zeros(W-1,dtype=a.dtype)
b = np.concatenate((p,a,p))
s = b.strides[0]
strided = np.lib.stride_tricks.as_strided
return strided(b[W-1:], shape=(W,len(a)+W-1), strides=(-s,s))
Sample runs -
In [99]: a = [1,2,3]
In [100]: sliding_windows(a, W=3)
Out[100]:
array([[1, 2, 3, 0, 0],
[0, 1, 2, 3, 0],
[0, 0, 1, 2, 3]])
In [101]: a = [1,2,3,4,5]
In [102]: sliding_windows(a, W=3)
Out[102]:
array([[1, 2, 3, 4, 5, 0, 0],
[0, 1, 2, 3, 4, 5, 0],
[0, 0, 1, 2, 3, 4, 5]])
With the same philosophy, but less messier version, we can also leverage np.lib.stride_tricks.as_strided based scikit-image's view_as_windows to get sliding windows. More info on use of as_strided based view_as_windows.
from skimage.util.shape import view_as_windows
def sliding_windows_vw(a, W):
a = np.asarray(a)
p = np.zeros(W-1,dtype=a.dtype)
b = np.concatenate((p,a,p))
return view_as_windows(b,len(a)+W-1)[::-1]