As we all know usually negative numbers in memory represents as two\'s complement numbers like that
from x to ~x + 1
and to get back we don
That's the same thing anyway. That is, ~x + 1 == ~(x - 1). But let's put that aside for now.
f(x) = ~x + 1 is its own inverse. Proof:
~(~x + 1) + 1 =
(definition of subtraction: a - b = ~(~a + b))
x - 1 + 1 =
(you know this step)
x
Also, ~x + 1 == ~(x - 1). Why? Well,
~(x - 1) =
(definition of subtraction: a - b = ~(~a + b))
~(~(~x + 1)) =
(remove double negation)
~x + 1
And that (slightly unusual) definition of subtraction, a - b = ~(~a + b)?
~(~a + b) =
(use definition of two's complement, ~x = -x - 1)
-(~a + b) - 1 =
(move the 1)
-(~a + b + 1) =
(use definition of two's complement, ~x = -x - 1)
-(-a + b) =
(you know this step)
a - b