Finding Patterns in a Numpy Array

后端 未结 5 556
忘了有多久
忘了有多久 2021-01-05 18:28

I am trying to find patterns in a numpy array, called values. I\'d like to return the starting index position of the pattern. I know I

5条回答
  •  滥情空心
    2021-01-05 18:49

    Here's a straight forward approach to using where. Start with a logical expression that finds the matches:

    In [670]: values = np.array([0,1,2,1,2,4,5,6,1,2,1])
         ...: searchval = [1,2]
         ...: 
    In [671]: (values[:-1]==searchval[0]) & (values[1:]==searchval[1])
    Out[671]: array([False,  True, False,  True, False, False, False, False,  True, False], dtype=bool)
    In [672]: np.where(_)
    Out[672]: (array([1, 3, 8], dtype=int32),)
    

    That could be generalized into a loop that operates on multiple searchval. Getting the slice range correct will take some fiddling. The roll suggested in another answer might be easier, but I suspect a bit slower.

    As long as searchval is small compared to values this general approach should be efficient. There is a np.in1d that does this sort of match, but with a or test. So it isn't applicable. But it too uses this iterative approach is the searchval list is small enough.

    Generalized slicing

    In [716]: values
    Out[716]: array([0, 1, 2, 1, 2, 4, 5, 6, 1, 2, 1])
    In [717]: searchvals=[1,2,1]
    In [718]: idx = [np.s_[i:m-n+1+i] for i in range(n)]
    In [719]: idx
    Out[719]: [slice(0, 9, None), slice(1, 10, None), slice(2, 11, None)]
    In [720]: [values[idx[i]] == searchvals[i] for i in range(n)]
    Out[720]: 
    [array([False,  True, False,  True, False, False, False, False,  True], dtype=bool),
     array([False,  True, False,  True, False, False, False, False,  True], dtype=bool),
     array([False,  True, False, False, False, False,  True, False,  True], dtype=bool)]
    In [721]: np.all(_, axis=0)
    Out[721]: array([False,  True, False, False, False, False, False, False,  True], dtype=bool)
    In [722]: np.where(_)
    Out[722]: (array([1, 8], dtype=int32),)
    

    I used the intermediate np.s_ to look at the slices and make sure they look reasonable.

    as_strided

    An advanced trick would be to use as_strided to construct the 'rolled' array and perform a 2d == test on that. as_strided is neat but tricky. To use it correctly you have to understand strides, and get the shape correct.

    In [740]: m,n = len(values), len(searchvals)
    In [741]: values.shape
    Out[741]: (11,)
    In [742]: values.strides
    Out[742]: (4,)
    In [743]: 
    In [743]: M = as_strided(values, shape=(n,m-n+1),strides=(4,4))
    In [744]: M
    Out[744]: 
    array([[0, 1, 2, 1, 2, 4, 5, 6, 1],
           [1, 2, 1, 2, 4, 5, 6, 1, 2],
           [2, 1, 2, 4, 5, 6, 1, 2, 1]])
    In [745]: M == np.array(searchvals)[:,None]
    Out[745]: 
    array([[False,  True, False,  True, False, False, False, False,  True],
           [False,  True, False,  True, False, False, False, False,  True],
           [False,  True, False, False, False, False,  True, False,  True]], dtype=bool)
    In [746]: np.where(np.all(_,axis=0))
    Out[746]: (array([1, 8], dtype=int32),)
    

提交回复
热议问题