I am trying to figure out an efficient way of finding row intersections of two np.arrays.
Two arrays have the same shapes, and duplicate values in each
If you have no duplicates within a row you can try to replicate what np.intersect1d does under the hood (see the source code here):
>>> c = np.hstack((a, b))
>>> c
array([[2, 5, 6, 2, 3, 4],
[8, 2, 3, 7, 4, 3],
[4, 1, 5, 5, 4, 1],
[1, 7, 9, 7, 6, 9]])
>>> c.sort(axis=1)
>>> c
array([[2, 2, 3, 4, 5, 6],
[2, 3, 3, 4, 7, 8],
[1, 1, 4, 4, 5, 5],
[1, 6, 7, 7, 9, 9]])
>>> c[:, 1:] == c[:, :-1]
array([[ True, False, False, False, False],
[False, True, False, False, False],
[ True, False, True, False, True],
[False, False, True, False, True]], dtype=bool)
>>> np.sum(c[:, 1:] == c[:, :-1], axis=1)
array([1, 1, 3, 2])