I have two data frames, logger and df (times are numeric):
logger <- data.frame(
time = c(1280248354:1280248413),
temp = runif(60,min=18,max=24.5)
)
df &
I'd use data.table for this. It makes it super easy and super fast joining on keys. There is even a really helpful roll = "nearest" argument for exactly the behaviour you are looking for (except in your example data it is not necessary because all times from df appear in logger). In the following example I renamed df$time to df$time1 to make it clear which column belongs to which table...
# Load package
require( data.table )
# Make data.frames into data.tables with a key column
ldt <- data.table( logger , key = "time" )
dt <- data.table( df , key = "time1" )
# Join based on the key column of the two tables (time & time1)
# roll = "nearest" gives the desired behaviour
# list( obs , time1 , temp ) gives the columns you want to return from dt
ldt[ dt , list( obs , time1 , temp ) , roll = "nearest" ]
# time obs time1 temp
# 1: 1280248361 8 1280248361 18.07644
# 2: 1280248366 4 1280248366 21.88957
# 3: 1280248370 3 1280248370 19.09015
# 4: 1280248376 5 1280248376 22.39770
# 5: 1280248381 6 1280248381 24.12758
# 6: 1280248383 10 1280248383 22.70919
# 7: 1280248385 1 1280248385 18.78183
# 8: 1280248389 2 1280248389 18.17874
# 9: 1280248393 9 1280248393 18.03098
#10: 1280248403 7 1280248403 22.74372