I\'m using the code from the MNIST tutorial:
feature_columns = [tf.contrib.layers.real_valued_column(\"\", dimension=4)]
classifier = tf.contrib.learn.DNNCla
The DNNClassifier predict function by default have as_iterable=True. Thus, it returns an generator. For getting values of predictions instead of generator, pass as_iterable=False in classifier.predict method.
For example,
classifier.predict(input_fn = _my_predict_data,as_iterable=False)
For understanding more about classifier methods and arguments. Here is a part of documentation for predict method.
From DNNClassifier documentation:
Args:
Returns: