This question asks about aggregation by time period in R, what pandas calls resampling. The most useful answer uses the XTS package to group by a given time period, applying
Using ddply from plyr package:
library(plyr)
bikecounts$Date<-with(bikecounts,as.Date(Date, format = "%m/%d/%Y"))
x<-ddply(bikecounts,.(Date),summarise, sumnorth=sum(Northbound),sumsouth=sum(Southbound))
> head(x)
Date sumnorth sumsouth
1 2012-10-02 1165 773
2 2012-10-03 1761 1760
3 2012-10-04 1767 1708
4 2012-10-05 1590 1558
5 2012-10-06 926 1080
6 2012-10-07 951 1191
> tail(x)
Date sumnorth sumsouth
298 2013-07-26 1964 1999
299 2013-07-27 1212 1289
300 2013-07-28 902 1078
301 2013-07-29 2040 2048
302 2013-07-30 2314 2226
303 2013-07-31 2008 2076