Using a microcontroller (PIC18F4580), I need to collect data and send it to an SD card for later analysis. The data it collects will have values between 0 and 1023, or 0x0 a
If the values are correctly in range (0..1023), then your last conversion is unnecessarily wasteful on the divisions; the last line could be replaced with:
temp[3] = 1023 / 1000;
or even:
temp[3] = 1023 >= 1000;
Since division is repeated subtraction, but you have a very special case (not a general case) division to deal with, I'd be tempted to compare the timings for the following code with the division version. I note that you put the digits into the string in 'reverse order' - the least significant digit goes in temp[0]
and the most in temp[4]
. Also, there is no chance of null-terminating the string given the storage. This code uses a table of 8 bytes of static data - considerably less than many of the other solutions.
void convert_to_ascii(int value, char *temp)
{
static const short subtractors[] = { 1000, 100, 10, 1 };
int i;
for (i = 0; i < 4; i++)
{
int n = 0;
while (value >= subtractors[i])
{
n++;
value -= subtractors[i];
}
temp[3-i] = n + '0';
}
}
This platform is probably not representative of your microcontroller, but the test shows that on this platform, the subtraction is considerably slower than the division.
void convert_by_division(int value, char *temp)
{
temp[0] = (value % 10) + '0';
temp[1] = (value % 100) / 10 + '0';
temp[2] = (value % 1000) / 100 + '0';
temp[3] = (value % 10000) / 1000 + '0';
}
void convert_by_subtraction(int value, char *temp)
{
static const short subtractors[] = { 1000, 100, 10, 1 };
int i;
for (i = 0; i < 4; i++)
{
int n = 0;
while (value >= subtractors[i])
{
n++;
value -= subtractors[i];
}
temp[3-i] = n + '0';
}
}
#include
#include
#include
static void time_convertor(const char *tag, void (*function)(void))
{
int r;
Clock ck;
char buffer[32];
clk_init(&ck);
clk_start(&ck);
for (r = 0; r < 10000; r++)
(*function)();
clk_stop(&ck);
printf("%s: %12s\n", tag, clk_elapsed_us(&ck, buffer, sizeof(buffer)));
}
static void using_subtraction(void)
{
int i;
for (i = 0; i < 1024; i++)
{
char temp1[4];
convert_by_subtraction(i, temp1);
}
}
static void using_division(void)
{
int i;
for (i = 0; i < 1024; i++)
{
char temp1[4];
convert_by_division(i, temp1);
}
}
int main()
{
int i;
for (i = 0; i < 1024; i++)
{
char temp1[4];
char temp2[4];
convert_by_subtraction(i, temp1);
convert_by_division(i, temp2);
if (memcmp(temp1, temp2, 4) != 0)
printf("!!DIFFERENCE!! ");
printf("%4d: %.4s %.4s\n", i, temp1, temp2);
}
time_convertor("Using division ", using_division);
time_convertor("Using subtraction", using_subtraction);
time_convertor("Using division ", using_division);
time_convertor("Using subtraction", using_subtraction);
time_convertor("Using division ", using_division);
time_convertor("Using subtraction", using_subtraction);
time_convertor("Using division ", using_division);
time_convertor("Using subtraction", using_subtraction);
return 0;
}
Compiling with GCC 4.5.1, and working in 32-bit, the average timings were (optimization '-O
'):
0.13
seconds using division0.65
seconds using subtractionCompiling and working in 64-bit, the average timings were:
0.13
seconds using division0.48
seconds using subtractionClearly, on this machine, using subtraction is not a winning proposition. You would have to measure on your machine to make a decision. And removing the modulo 10000 operation will only skew results in favour of the division (it knocks about 0.02 seconds off the time with division when replaced with the comparison; that's a 15% saving and worth having).