I have trained word2vec in gensim. In Keras, I want to use it to make matrix of sentence using that word embedding. As storing the matrix of all the sentences is very space
My code for gensim-trained w2v model. Assume all words trained in the w2v model is now a list variable called all_words.
from keras.preprocessing.text import Tokenizer
import gensim
import pandas as pd
import numpy as np
from itertools import chain
w2v = gensim.models.Word2Vec.load("models/w2v.model")
vocab = w2v.wv.vocab
t = Tokenizer()
vocab_size = len(all_words) + 1
t.fit_on_texts(all_words)
def get_weight_matrix():
# define weight matrix dimensions with all 0
weight_matrix = np.zeros((vocab_size, w2v.vector_size))
# step vocab, store vectors using the Tokenizer's integer mapping
for i in range(len(all_words)):
weight_matrix[i + 1] = w2v[all_words[i]]
return weight_matrix
embedding_vectors = get_weight_matrix()
emb_layer = Embedding(vocab_size, output_dim=w2v.vector_size, weights=[embedding_vectors], input_length=FIXED_LENGTH, trainable=False)