Python BigQuery allowLargeResults with pandas.io.gbq

后端 未结 3 1512
死守一世寂寞
死守一世寂寞 2021-01-04 14:00

I want to use the Pandas library to read BigQuery data. How do I allow large results?
For non-Pandas BigQuery interactions, this can be achieved like this.

Curr

3条回答
  •  灰色年华
    2021-01-04 14:43

    Decided to post the proper way to do this via the python3 google.cloud API. Looking at my previous answer I see that it would fail like yosemite_k said.

    Large results really need to follow BigQuery -> Storage -> local -> dataframe pattern.

    BigQuery resources:

    • https://cloud.google.com/bigquery/docs/reference/libraries
    • https://googlecloudplatform.github.io/google-cloud-python/stable/bigquery-client.html
    • http://google-cloud-python.readthedocs.io/en/latest/bigquery-usage.html

    Storage resources:

    • https://googlecloudplatform.github.io/google-cloud-python/stable/storage-client.html
    • https://googlecloudplatform.github.io/google-cloud-python/stable/storage-blobs.html

    Pandas Resources:

    • http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

    Installation:

    pip install pandas
    pip install google-cloud-storage
    pip install google-cloud-bigquery
    

    Full implementation (bigquery_to_dataframe.py):

    """
    We require python 3 for the google cloud python API
        mkvirtualenv --python `which python3` env3
    And our dependencies:
        pip install pandas
        pip install google-cloud-bigquery
        pip install google-cloud-storage
    """
    import os
    import time
    import uuid
    
    from google.cloud import bigquery
    from google.cloud import storage
    import pandas as pd
    
    
    def bq_to_df(project_id, dataset_id, table_id, storage_uri, local_data_path):
        """Pipeline to get data from BigQuery into a local pandas dataframe.
    
        :param project_id: Google project ID we are working in.
        :type project_id: str
        :param dataset_id: BigQuery dataset id.
        :type dataset_id: str
        :param table_id: BigQuery table id.
        :type table_id: str
        :param storage_uri: Google Storage uri where data gets dropped off.
        :type storage_uri: str
        :param local_data_path: Path where data should end up.
        :type local_data_path: str
        :return: Pandas dataframe from BigQuery table.
        :rtype: pd.DataFrame
        """
        bq_to_storage(project_id, dataset_id, table_id, storage_uri)
    
        storage_to_local(project_id, storage_uri, local_data_path)
    
        data_dir = os.path.join(local_data_path, "test_data")
        df = local_to_df(data_dir)
    
        return df
    
    
    def bq_to_storage(project_id, dataset_id, table_id, target_uri):
        """Export a BigQuery table to Google Storage.
    
        :param project_id: Google project ID we are working in.
        :type project_id: str
        :param dataset_id: BigQuery dataset name where source data resides.
        :type dataset_id: str
        :param table_id: BigQuery table name where source data resides.
        :type table_id: str
        :param target_uri: Google Storage location where table gets saved.
        :type target_uri: str
        :return: The random ID generated to identify the job.
        :rtype: str
        """
        client = bigquery.Client(project=project_id)
    
        dataset = client.dataset(dataset_name=dataset_id)
        table = dataset.table(name=table_id)
    
        job = client.extract_table_to_storage(
            str(uuid.uuid4()),  # id we assign to be the job name
            table,
            target_uri
        )
        job.destination_format = 'CSV'
        job.write_disposition = 'WRITE_TRUNCATE'
    
        job.begin()  # async execution
    
        if job.errors:
            print(job.errors)
    
        while job.state != 'DONE':
            time.sleep(5)
            print("exporting '{}.{}' to '{}':  {}".format(
                dataset_id, table_id, target_uri, job.state
            ))
            job.reload()
    
        print(job.state)
    
        return job.name
    
    
    def storage_to_local(project_id, source_uri, target_dir):
        """Save a file or folder from google storage to a local directory.
    
        :param project_id: Google project ID we are working in.
        :type project_id: str
        :param source_uri: Google Storage location where file comes form.
        :type source_uri: str
        :param target_dir: Local file location where files are to be stored.
        :type target_dir: str
        :return: None
        :rtype: None
        """
        client = storage.Client(project=project_id)
    
        bucket_name = source_uri.split("gs://")[1].split("/")[0]
        file_path = "/".join(source_uri.split("gs://")[1].split("/")[1::])
        bucket = client.lookup_bucket(bucket_name)
    
        folder_name = "/".join(file_path.split("/")[0:-1]) + "/"
        blobs = [o for o in bucket.list_blobs() if o.name.startswith(folder_name)]
    
        # get files if we wanted just files
        blob_name = file_path.split("/")[-1]
        if blob_name != "*":
            print("Getting just the file '{}'".format(file_path))
            our_blobs = [o for o in blobs if o.name.endswith(blob_name)]
        else:
            print("Getting all files in '{}'".format(folder_name))
            our_blobs = blobs
    
        print([o.name for o in our_blobs])
    
        for blob in our_blobs:
            filename = os.path.join(target_dir, blob.name)
    
            # create a complex folder structure if necessary
            if not os.path.isdir(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
    
            with open(filename, 'wb') as f:
                blob.download_to_file(f)
    
    
    def local_to_df(data_path):
        """Import local data files into a single pandas dataframe.
    
        :param data_path: File or folder path where csv data are located.
        :type data_path: str
        :return: Pandas dataframe containing data from data_path.
        :rtype: pd.DataFrame
        """
        # if data_dir is a file, then just load it into pandas
        if os.path.isfile(data_path):
            print("Loading '{}' into a dataframe".format(data_path))
            df = pd.read_csv(data_path, header=1)
        elif os.path.isdir(data_path):
            files = [os.path.join(data_path, fi) for fi in os.listdir(data_path)]
            print("Loading {} into a single dataframe".format(files))
            df = pd.concat((pd.read_csv(s) for s in files))
        else:
            raise ValueError(
                "Please enter a valid path.  {} does not exist.".format(data_path)
            )
    
        return df
    
    
    if __name__ == '__main__':
        PROJECT_ID = "my-project"
        DATASET_ID = "bq_dataset"
        TABLE_ID = "bq_table"
        STORAGE_URI = "gs://my-bucket/path/for/dropoff/*"
        LOCAL_DATA_PATH = "/path/to/save/"
    
        bq_to_df(PROJECT_ID, DATASET_ID, TABLE_ID, STORAGE_URI, LOCAL_DATA_PATH)
    

提交回复
热议问题