I was wondering if we can use a binary search tree to simulate heap operations (insert, find minimum, delete minimum), i.e., use a BST for doing the same job?
Are t
Sure we can. but with a balanced BST.
The minimum is the leftest element. The maximum is the rightest element. finding those elements is O(logn) each, and can be cached on each insert/delete, after the data structure was modified [note there is room for optimizations here, but this naive approach also doesn't contradict complexity requirement!]
This way you get insert,delete: O(logn), findMin/findMax: O(1)
EDIT:
The only advantage I can think of in this implementtion is that you get both findMin,findMax in one data structure.
However, this solution will be much slower [more ops per step, more cache misses are expected...] and consume more space then the regular array-based implementation of a heap.