Can someone please tell how to use ensembles in sklearn using partial fit. I don\'t want to retrain my model. Alternatively, can we pass pre-trained models for ensembling ?
It's not too hard to implement the voting. Here's my implementation:
import numpy as np
class VotingClassifier(object):
""" Implements a voting classifier for pre-trained classifiers"""
def __init__(self, estimators):
self.estimators = estimators
def predict(self, X):
# get values
Y = np.zeros([X.shape[0], len(self.estimators)], dtype=int)
for i, clf in enumerate(self.estimators):
Y[:, i] = clf.predict(X)
# apply voting
y = np.zeros(X.shape[0])
for i in range(X.shape[0]):
y[i] = np.argmax(np.bincount(Y[i,:]))
return y