I have a numpy array which contains time series data. I want to bin that array into equal partitions of a given length (it is fine to drop the last partition if it is not t
Since you already have a numpy array, to avoid for loops, you can use reshape and consider the new dimension to be the bin:
In [33]: data.reshape(2, -1)
Out[33]:
array([[4, 2, 5, 6, 7],
[5, 4, 3, 5, 7]])
In [34]: data.reshape(2, -1).mean(0)
Out[34]: array([ 4.5, 3. , 4. , 5.5, 7. ])
Actually this will just work if the size of data is divisible by n. I'll edit a fix.
Looks like Joe Kington has an answer that handles that.