How to convert Numpy array to Panda DataFrame

前端 未结 4 2060
春和景丽
春和景丽 2021-01-04 05:39

I have a Numpy array that looks like this:

[400.31865662]
[401.18514808]
[404.84015554]
[405.14682194]
[405.67735105]
[273.90969447]
[274.0894528]

4条回答
  •  Happy的楠姐
    2021-01-04 06:09

    Since I assume the many visitors of this post aren't here for OP's specific and un-reproducible issue, here's a general answer:

    df = pd.DataFrame(array)
    

    The strength of pandas is to be nice for the eye (like Excel), so it's important to use column names.

    import numpy as np
    import pandas as pd
    
    array = np.random.rand(5, 5)
    
    array([[0.723, 0.177, 0.659, 0.573, 0.476],
           [0.77 , 0.311, 0.533, 0.415, 0.552],
           [0.349, 0.768, 0.859, 0.273, 0.425],
           [0.367, 0.601, 0.875, 0.109, 0.398],
           [0.452, 0.836, 0.31 , 0.727, 0.303]])
    
    columns = [f'col_{num}' for num in range(5)]
    index = [f'index_{num}' for num in range(5)]
    

    Here's where the magic happens:

    df = pd.DataFrame(array, columns=columns, index=index)
    
                col_0     col_1     col_2     col_3     col_4
    index_0  0.722791  0.177427  0.659204  0.572826  0.476485
    index_1  0.770118  0.311444  0.532899  0.415371  0.551828
    index_2  0.348923  0.768362  0.858841  0.273221  0.424684
    index_3  0.366940  0.600784  0.875214  0.108818  0.397671
    index_4  0.451682  0.836315  0.310480  0.727409  0.302597
    

提交回复
热议问题