Consider this example:
df <- data.frame(id=1:10,var1=LETTERS[1:10],var2=LETTERS[6:15])
fun.split <- function(x) tolower(as.character(x))
df$new.letter
@akrun solved 90% of my problem. But I had data.frames buried within data.frames, buried within data.frames and so on, without knowing the depth to which this was happening.
In this case, I thought sharing my recursive solution might be helpful to others searching this thread as I was:
unnest_dataframes <- function(x) {
y <- do.call(data.frame, x)
if("data.frame" %in% sapply(y, class)) unnest_dataframes(y)
y
}
new_data <- unnest_dataframes(df)
Although this itself sometimes has problems and it can be helpful to separate all columns of class "data.frame" from the original data set then cbind() it back together like so:
# Find all columns that are data.frame
# Assuming your data frame is stored in variable 'y'
data.frame.cols <- unname(sapply(y, function(x) class(x) == "data.frame"))
z <- y[, !data.frame.cols]
# All columns of class "data.frame"
dfs <- y[, data.frame.cols]
# Recursively unnest each of these columns
unnest_dataframes <- function(x) {
y <- do.call(data.frame, x)
if("data.frame" %in% sapply(y, class)) {
unnest_dataframes(y)
} else {
cat('Nested data.frames successfully unpacked\n')
}
y
}
df2 <- unnest_dataframes(dfs)
# Combine with original data
all_columns <- cbind(z, df2)