I am playing with a toy example to understand PCA vs keras autoencoder
I have the following code for understanding PCA:
import numpy as np
import mat
The earlier answer cover the whole thing, however I am doing the analysis on the Iris data - my code comes with a slightly modificiation from this post which dives further into the topic. As it was request, lets load the data
from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
iris = load_iris()
X = iris.data
y = iris.target
target_names = iris.target_names
scaler = MinMaxScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)
Let's do a regular PCA
from sklearn import decomposition
pca = decomposition.PCA()
pca_transformed = pca.fit_transform(X_scaled)
plot3clusters(pca_transformed[:,:2], 'PCA', 'PC')
A very simple AE model with linear layers, as the earlier answer pointed out with ... the first reference, one linear hidden layer and the mean squared error criterion is used to train the network, then the k hidden units learn to project the input in the span of the first k principal components of the data.
from keras.layers import Input, Dense
from keras.models import Model
import matplotlib.pyplot as plt
#create an AE and fit it with our data using 3 neurons in the dense layer using keras' functional API
input_dim = X_scaled.shape[1]
encoding_dim = 2
input_img = Input(shape=(input_dim,))
encoded = Dense(encoding_dim, activation='linear')(input_img)
decoded = Dense(input_dim, activation='linear')(encoded)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
print(autoencoder.summary())
history = autoencoder.fit(X_scaled, X_scaled,
epochs=1000,
batch_size=16,
shuffle=True,
validation_split=0.1,
verbose = 0)
# use our encoded layer to encode the training input
encoder = Model(input_img, encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
encoded_data = encoder.predict(X_scaled)
plot3clusters(encoded_data[:,:2], 'Linear AE', 'AE')
You can look into the loss if you want
#plot our loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model train vs validation loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
The function to plot the data
def plot3clusters(X, title, vtitle):
import matplotlib.pyplot as plt
plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X[y == i, 0], X[y == i, 1], color=color, alpha=1., lw=lw, label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title(title)
plt.xlabel(vtitle + "1")
plt.ylabel(vtitle + "2")
return(plt.show())
Regarding explaining the variability, using non-linear hidden function, leads to other approximation similar to ICA / TSNE and others. Where the idea of variance explanation is not there, still one can look into the convergence.